Тема № 8. Электродвигатели

ПРИНЦИП ДЕЙСТВИЯ, УСТРОЙСТВО И ОБЛАСТЬ ПРИМЕНЕНИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ.

Электродвигатель – это просто устройство для эффективного преобразования электрической энергии в механическую.
В основе этого преобразования лежит магнетизм. В электродвигателях используются постоянные магниты и электромагниты, кроме того, используются магнитные свойства различных материалов, чтобы создавать эти удивительные устройства.
Существует несколько типов электродвигателей. Отметим два главных класса: AC и DC.
Электродвигатели класса AC (Alternating Current) требуют для работы источник переменного тока или напряжения (такой источник Вы можете найти в любой электрической розетке в доме).
Электродвигатели класса DC (Direct Current) требуют для работы источник постоянного тока или напряжения (такой источник Вы можете найти в любой батарейке).
Универсальные двигатели могут работать от источника любого типа.
Не только конструкция двигателей различна, различны способы контроля скорости и вращающего момента, хотя принцип преобразования энергии одинаков для всех типов.
Электродвигатели используются повсюду. Даже дома вы можете обнаружить огромное количество электродвигателей. Электродвигатели используются в часах, в вентиляторе микроволновой печи, в стиральной машине, в компьютерных вентиляторах, в кондиционере, в соковыжималке и т. д. и т. п. Ну а электродвигатели, применяемые в промышленности, можно перечислять бесконечно. Диапазон физических размеров – от размера со спичечную головку до размера локомотивного двигателя.
Промышленный электродвигатель работает и на постоянном, и на переменном токе. Его статор – это электромагнит, создающий магнитное поле. Обмотки двигателя поочередно подключаются через щетки к источнику питания. Одна за другой они поворачивают ротор на небольшой угол, и ротор непрерывно вращается.
Простейший электродвигатель работает только на постоянном токе (от батарейки). Ток проходит по рамке, расположенной между полюсами постоянного магнита. Взаимодействие магнитных полей рамки с током и магнита заставляет рамку поворачиваться. После каждого полуоборота коллектор переключает контакты рамки, подходящие к батарейке, и поэтому рамка вращается.
Электродвигатели переменного тока общего назначения – электрические машины, преобразующие электрическую энергию в механическую, а также являются наиболее совершенным и распространенным видом привода машин и механизмов, преобразующих электрическую энергию в механическую.
В основе работы электродвигателей лежит процесс электромагнитной индукции, которая возникает при движении проводящей среды в магнитном поле. В качестве проводящей среды обычно используется обмотка, состоящая из достаточно большого количества проводников, соединенных между собой надлежащим способом. Магнитное поле в электродвигателе создается либо с помощью постоянных магнитов, либо возбуждающими обмотками, которые обтекаются токами. Электродвигатели обратимы, то есть могут работать по преобразованию электрической энергии в механическую и наоборот, в режиме генератора.
Электродвигатели состоят из защитного корпуса, в котором находится неподвижный полый цилиндрический статор, набранный из отдельных, изолированных друг от друга пластин электротехнической(магнитной) стали. На внутренней стороне статора в пазах расположены витки обмотки возбуждения из медной проволоки. Внутри статора располагается подвижный, вращающийся на валу ротор, состоящий тоже из стальных пластин, также изолированных друг от друга термостойким лаком. В пазах ротора располагаются витки медной обмотки. Обмотка статора подсоединяется к источнику переменного тока.
Электродвигатели переменного тока делятся на синхронные и асинхронные, в зависимости от того, в каком отношении находится скорость вращения к частоте.
Электродвигатели переменного тока имеют номинальный режим работы, который соответствует продолжительному режиму, кратковременному, повторно-кратковременному или перемежающимися режиму работы. Также электродвигатели имеют номинальные параметры.
При изготовлении и выборе электродвигателей большое значение имеют условия их эксплуатации и климатические условия, в зависимости от которых используются разные виды электродвигателей, имеющие конструкционные особенности, делающие их пригодными для эксплуатации в различных условиях.
При выборе электродвигателя необходимо учитывать коэффициент их полезного действия, а также нужно учитывать потери электрической энергии в проводниках, питающих электродвигатель.
Электродвигатели переменного тока имеют большое значения для удовлетворения потребностей промышленного производства. Они используются в большинстве электроприводов. Так, например, синхронные электродвигатели используются в качестве двигателей в крупных установках, таких, как привод поршневых компрессоров, воздуховодов, гидравлических насосов и т. д. Асинхронные двигатели также применяются в промышленности, например, для приводов крановых установок общепромышленного назначения, а также различных грузовых лебедок и других устройств, необходимых в производстве.
Можно сказать, что электродвигатели переменного тока имеют огромное значение для большинства видов промышленности.
Электрические двигатели переменного тока подразделяются на синхронные и асинхронные двигатели.
Синхронные электрические двигатели – такие двигатели, скорость вращения которых находится в постоянном отношении к частоте электрической сети, для асинхронных – отношение непостоянно. Скорость вращения асинхронных двигателей изменяется с изменением нагрузки.
Асинхронные электродвигатели могут иметь преобразовательное устройство в виде коллектора( коллекторные машины), или быть без него (бесколлекторные).
Режим работы электродвигателей определяется основными энергетическими процессами, происходящими в них (двигательный, генераторный, тормозной и преобразовательный), а также режим работы должен иметь количественную оценку. Количественный режим работы характеризуется целым рядом электрических и механических величин: токами, напряжения, мощностью, скоростью вращения и другими. Электрический двигатель предназначен для работы в определенных внешних условиях с определенными значениями параметров ( токи, напряжение, мощность и другие), при которых она эксплуатируется в течении заданного и достаточно длительного срока. Указанные значения различных величин, определяющих режим работы электродвигателя носят названия номинальных, а сам режим – номинальный. Наиболее важные номинальные величины указываются на специальном щитке электрического двигателя.
Наибольшее распространение среди электрических двигателей переменного тока получили асинхронные электродвигатели с трехфазной симметричной обмоткой на статоре, питаемые от сети переменного тока и с трехфазной или многофазной обмоткой на роторе. Асинхронные двигатели в основном используются как двигатели, в то время как синхронные двигатели в основном используются как генераторы, так как электрический двигатель может работать как в двигательном, так и в генераторном режиме.
Асинхронные электродвигатели малой мощности часто выполняют однофазными, что позволяет использовать их в устройствах, питаемых от двухпроводной сети. Эти двигатели широко применяются в бытовой технике. В промышленности широкое применение получили трехфазные электрические двигатели, питаемые от трехпроводной промышленной сети.
В большинстве асинхронных электродвигателей применяется короткозамкнутый ротор. Обмотка короткозамкнутого ротора выполняется в виде цилиндрической клетки из медных или алюминиевых стержней, которые без изоляции вставляются в пазы сердечника ротора.
Асинхронные электродвигатели выпускаются отечественной промышленностью в виде единых серий, охватывающих все необходимые мощности и частоты вращения. В основном выпускаются двигатели для питания от сети с частотой 50Гц. Двигатели общего применения имеют твердую шкалу мощностей при всех частотах вращения.
Буквенное обозначение всех серий асинхронных двигателей включает букву А(асинхронный), следующие буквы, входящие в обозначение отражают особенности конструкции двигателя.
В основном выпускаются асинхронные электродвигатели с короткозамкнутым ротором, предназначенные для общего применения в промышленности в условиях умеренного климата.
По степени защищенности от воздействия окружающей среды двигатели изготавливают в двух вариантах: защищенные (1P23) и закрытые обдуваемые (1P44).
Двигатели имеют стандартную шкалу мощностей, применяемую при всех частотах вращения:
0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11,0; 15,0; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.
Шкала высот осей вращения (над фундаментной плитой) соответствует рекомендациям МЭК:
50; 56; 63; 71; 80; 90; 100; 112; 132; 160; 180; 200; 225; 250; 280; 315; 355 мм.
При обозначении электродвигателей цифрой указывается порядковый номер серии, затем наименование двигателя – например А(асинхронный); далее обозначается исполнение двигателя(например: Н - защищенное исполнение);затем указывается материал из которого сделана станина и щиты двигателя (А – станина и щиты из алюминия, X – станина из алюминия и чугунные щиты); далее 50-355 – высота оси вращения; S,L,M – установочные размеры по длине корпуса; A,B – обозначается длина магнитопровода (A – первая длина, вторая длина – B).
Также указывается число полюсов двигателей: 2, 4 , 6, 8, 10, 12; климатическое исполнение, учитывающее возможность перегрева двигателя при работе и повреждении его изоляции (У – умеренный климат, С – северное, Т – тропическое), далее указывается категория размещения цифрой в соответствии со стандартом ( например – 3).
Например: 4АА56А2У3 –электродвигатель серии 4, асинхронный, закрытого исполнения, станина и щиты из алюминия, с высотой оси вращения 56 мм, магнитопровод первой длины, двухполюсной, для районов умеренного климата, 3 категории размещения.
Двигатели мощностью 0,12 … 0,37 кВт изготавливаются на напряжение 220 … 380 В, 0,55 … 110 кВт – на напряжение 220 … 380 и 380 … 680 В, мощностью 132 … 400 кВт на напряжение 380 … 680 В.
По способу защищенности от воздействия окружающей среды двигатели имеют два исполнения: брызгозащитное (обеспечивает защиту от попадания внутрь капель, падающих под углом 60 градусов к вертикали(двигатели обозначаются А2); закрытые двигатели – обеспечивают защиту от попадания твердых тел диаметром не менее 1 мм и брызг воды любого направления (двигатели обозначаются АО2)
Синхронные электродвигатели – двухобмоточные электрические машины, одна из обмоток которых присоединяется к электрической сети с постоянной частотой вращения, а 2 обмотка возбуждается постоянным током, частота вращения ротора не зависит от нагрузки.
Применяются в качестве двигателей в крупных установках (привод поршневых компрессоров, воздухопроводов и т. д.), в основном используются в качестве генераторов.
Каждый двигатель маркируется. На корпусе каждого двигателя должна быть прочно укреплена табличка, на которой указаны: товарный знак предприятия-изготовителя; тип двигателя с указанием климатического исполнения и категории; заводской номер двигателя;
номинальный режим работы; номинальные - мощность, кВт; напряжение,В; сила тока, А; частота вращения, об/мин; система возбуждения; напряжение параллельной обмотки, В; масса; год выпуска; стандарт.
Для двигателей взрывозащищенных на видном месте должны быть нанесены знак взрывозащиты (ВЗГ) и возле заземляющих зажимов – знаки заземления.
Электродвигатели переменного тока нашли самое широкое применение в промышленности, они используются для привода быстроходных механизмов, для привода насосов, вентиляторов, прокатных станов и т. д. Электродвигатели применяются во многих отраслях промышленности.
Электродвигатель постоянного тока. Принцип действия и устройство.
На рис. представлен простейший электродвигатель постоянного тока, а на рис. Неподвижная часть двигателя, называемая индуктор, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в электродвигателе основного магнитного потока. Индуктор изображенной на рис. имеет два полюса 1.
Вращающаяся часть электродвигателя состоит из укрепленных на валу цилиндрического якоря 2 и коллектора. 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанном на рис. простейшем электродвигателе имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.
Основной магнитный поток в нормальных электродвигателях постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.
Вывод по вопросу: Электродвигатели переменного тока имеют большое значения для удовлетворения потребностей промышленного производства. Они используются в большинстве электроприводов.


ПРАВИЛА БЕЗОПАСНОСТИ ПРИ РАБОТЕ С ЭЛЕКТРОДВИГАТЕЛЯМИ.

Если работа на электродвигателе или приводимом им в движение механизме связана с прикосновением к токоведущим и вращающимся частям, электродвигатель должен быть отключен с выполнением предусмотренных технических мероприятий, предотвращающих его ошибочное включение. При этом у двухскоростного электродвигателя должны быть отключены и разобраны обе цепи питания обмоток статора.
Работа, не связанная с прикосновением к токоведущим или вращающимся частям электродвигателя и приводимого им в движение механизма, может производиться на работающем электродвигателе.
Не допускается снимать ограждения вращающихся частей работающих электродвигателя и механизма.
При работе на электродвигателе допускается установка заземления на любом участке кабельной линии, соединяющей электродвигатель с секцией РУ, щитом, сборкой.
Если работы на электродвигателе рассчитаны на длительный срок, не выполняются или прерваны на несколько дней, то отсоединенная от него кабельная линия должна быть заземлена также со стороны электродвигателя.
В тех случаях, когда сечение жил кабеля не позволяет применять переносные заземления, у электродвигателей напряжением до 1000 В допускается заземлять кабельную линию медным проводником сечением не менее сечения жилы кабеля либо соединять между собой жилы кабеля и изолировать их. Такое заземление или соединение жил кабеля должно учитываться в оперативной документации наравне с переносным заземлением.
Перед допуском к работам на электродвигателях, способных к вращению за счет соединенных с ними механизмов (дымососы, вентиляторы, насосы и др.), штурвалы запорной арматуры (задвижек, вентилей, шиберов и т.п.) должны быть заперты на замок. Кроме того, приняты меры по затормаживанию роторов электродвигателей или расцеплению соединительных муфт.
Необходимые операции с запорной арматурой должны быть согласованы с начальником смены технологического цеха, участка с записью в оперативном журнале.
Со схем ручного дистанционного и автоматического управления электроприводами запорной арматуры, направляющих аппаратов должно быть снято напряжение.
На штурвалах задвижек, шиберов, вентилей должны быть вывешены плакаты "Не открывать! Работают люди", а на ключах, кнопках управления электроприводами запорной арматуры - "Не включать! Работают люди".
На однотипных или близких по габариту электродвигателях, установленных рядом с двигателем, на котором предстоит выполнить работу, должны быть вывешены плакаты "Стой! Напряжение" независимо от того, находятся они в работе или остановлены.
Порядок включения электродвигателя для опробования должен быть следующим:
•производитель работ удаляет бригаду с места работы, оформляет окончание работы и сдает наряд оперативному персоналу;
•оперативный персонал снимает установленные заземления, плакаты, выполняет сборку схемы.
После опробования при необходимости продолжения работы на электродвигателе оперативный персонал вновь подготавливает рабочее место и бригада по наряду повторно допускается к работе на электродвигателе.
Работа на вращающемся электродвигателе без соприкосновения с токоведущими и вращающимися частями может проводиться по распоряжению.
Обслуживание щеточного аппарата на работающем электродвигателе допускается по распоряжению обученному для этой цели работнику, имеющему группу III, при соблюдении следующих мер предосторожности:
•работать с использованием средств защиты лица и глаз, в застегнутой спецодежде, остерегаясь захвата ее вращающимися частями электродвигателя;
•пользоваться диэлектрическими галошами, коврами;
•не касаться руками одновременно токоведущих частей двух полюсов или токоведущих и заземляющих частей.
Кольца ротора допускается шлифовать на вращающемся электродвигателе лишь с помощью колодок из изоляционного материала.
В инструкциях по охране труда соответствующих организаций должны быть детально изложены требования к подготовке рабочего места и организации безопасного проведения работ на электродвигателях, учитывающие виды используемых электрических машин, особенности пускорегулирующих устройств, специфику механизмов, технологических схем и т.д.
Электродвигатели, пускорегулирующие устройства и защиты, а также все электрическое и вспомогательное оборудование к ним выбираются и устанавливаются в соответствии с требованиями правил устройства электроустановок.
На электродвигатели и приводимые ими механизмы должны быть нанесены стрелки, указывающие направление вращения.
На электродвигателях и пускорегулирующих устройствах, должны быть надписи с наименованием агрегата и (или) механизма, к которому они относятся.
Плавкие вставки предохранителей должны быть калиброванными и иметь клеймо с указанием номинального тока установки, нанесенное на заводе-изготовителе или подразделении Потребителя, имеющего соответствующее оборудование и право на калибровку предохранителей. Применение некалиброванных вставок не допускается.
При кратковременном перерыве электропитания электродвигателей должен быть обеспечен при повторной подаче напряжения самозапуск электродвигателей ответственных механизмов для сохранения механизмов в работе по условиям технологического процесса и допустимости по условиям безопасности.
Перечень ответственных механизмов, участвующих в самозапуске, должен быть утвержден техническим руководителем Потребителя.
Продуваемые электродвигатели, устанавливаемые в пыльных помещениях и помещениях с повышенной влажностью, должны быть оборудованы устройствами подвода чистого охлаждающего воздуха, температура которого и его количество должны соответствовать требованиям заводских инструкций.
Плотность тракта охлаждения (корпуса электродвигателя, воздуховодов, заслонок) должна проверяться не реже 1 раза в год.
Электродвигатели с водяным охлаждением активной стали статора и обмотки ротора, а также со встроенными водяными воздухоохладителями должны быть оборудованы устройствами, сигнализирующими о появлении воды в корпусе. Эксплуатация оборудования и аппаратуры систем водяного охлаждения, качество воды должны соответствовать требованиям заводских инструкций.
На электродвигателях, имеющих принудительную смазку подшипников, должна быть установлена защита, действующая на сигнал и отключение электродвигателя при повышении температуры вкладышей подшипников или прекращении поступления смазки.
На групповых сборках и щитках электродвигателей должны быть предусмотрены вольтметры или сигнальные лампы контроля наличия напряжения.
Электродвигатели механизмов, технологический процесс которых регулируется по току статора, а также механизмов, подверженных технологической перегрузке, должны быть оснащены амперметрами, устанавливаемыми на пусковом щите или панели. Амперметры должны быть также включены в цепи возбуждения синхронных электродвигателей. На шкале амперметра должна быть красная черта, соответствующая длительно допустимому или номинальному значению тока статора (ротора).
На электродвигателях постоянного тока, используемых для привода ответственных механизмов, независимо от их мощности должен контролироваться ток якоря.
Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего - 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
На групповых сборках и щитках электродвигателей должны быть предусмотрены вольтметры или сигнальные лампы контроля наличия напряжения.
Электродвигатели механизмов, технологический процесс которых регулируется по току статора, а также механизмов, подверженных технологической перегрузке, должны быть оснащены амперметрами, устанавливаемыми на пусковом щите или панели. Амперметры должны быть также включены в цепи возбуждения синхронных электродвигателей. На шкале амперметра должна быть красная черта, соответствующая длительно допустимому или номинальному значению тока статора (ротора).
На электродвигателях постоянного тока, используемых для привода ответственных механизмов, независимо от их мощности должен контролироваться ток якоря.
Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего - 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
Электродвигатели должны быть немедленно отключены от сети в следующих случаях:
•при несчастных случаях с людьми;
•появлении дыма или огня из корпуса электродвигателя, а также из его пускорегулирующей аппаратуры и устройства возбуждения;
•поломке приводного механизма;
•резком увеличение вибрации подшипников агрегата;
•нагреве подшипников сверх допустимой температуры, установленной в инструкции завода-изготовителя.
В эксплуатационных инструкциях могут быть указаны и другие случаи, при которых электродвигатели должны быть немедленно отключены, а также определен порядок устранения аварийного состояния и пуска электродвигателей.
Профилактические испытания и ремонт электродвигателей, их съем и установку при ремонте должен проводить обученный персонал Потребителя или подрядной организации.
Вывод по вопросу: Электродвигатели, пускорегулирующие устройства и защиты, а также все электрическое и вспомогательное оборудование к ним выбираются и устанавливаются в соответствии с требованиями правил устройства электроустановок.


ПОЖАРНАЯ ОПАСНОСТЬ ЭЛЕКТРОДВИГАТЕЛЕЙ.

В результате перегрузки электрических машин, из-за засорения вентиляционных каналов системы охлаждения а также при покрытии теплоизолирующим слоем волокон, пуха и пыли внутренней полости машин возникает их перегрев. В этих случаях машина перегревается равномерно. Кроме того, случается, что в электродвигателях перегреваются только обмотки статора или ротора.
Равномерный перегрев всей обмотки статора происходит, если электродвигатель перегружен или нарушен режим его охлаждения, обмотка статора соединена «треугольником», напряжение на зажимах двигателя ниже нормального, вследствие чего в двигателе при номинальной мощности возникают токи перегрузки.
Перегрев обмотки ротора (якоря) возникает при перегрузке двигателя и нарушении режима его охлаждения, в результате плохого контакта в пайках любых частей обмотки, при слабом контакте или искрении в щеточном аппарате.
Перегрев электрических машин может быть вызван их работой на двух фазах, что является наиболее частой причиной выхода из строя трехфазных асинхронных двигателей. Потеря одной фазы возможна из-за обрыва проводников, нарушения плотности контактов, повреждения аппаратов (поломки, нарушения регулировки, подгорания контактов в магнитном пускателе), но чаще вследствие перегорания одной из плавких вставок в предохранителях. Установлено, что общее количество электродвигателей, вышедших из строя в результате работы на двух фазах, составляет 35—45 % общего числа повреждений электродвигателей на предприятиях.
Перегрев обмоток электрических машин может вызвать воспламенение изоляции проводов, что нередко приводит к пожару, особенно в тех случаях, когда вблизи электрических машин имеются горючие материалы или на их поверхности находятся отложения волокон и пыли.
Распространенной причиной возникновения пожаров является пробой изоляции обмоток на корпус электрических машин. В процессе эксплуатации электрических машин производственная пыль, попадая на обмотку, может образовывать проводящие мостики, которые вызывают перекрытие или пробой изоляции на корпус. Длительный перегрев электрических машин или работа в условиях повышенных температур окружающей среды делает изоляцию обмоток хрупкой и гигроскопичной, «то также может привести к КЗ и пробою на корпус машины.
Большие переходные сопротивления у электрических машин наиболее часто возникают в распределительных коробках и местах соединения подводящих проводов с выводными концами статорной обмотки (у асинхронных двигателей). Многие асинхронные электродвигатели не имеют зажимов на корпусе для подключения проводов. Поэтому провода соединяются с концами статорной обмотки обычной скруткой, опрессованием или с помощью болтов.
При эксплуатации электрических машин под действием вибрации, резких колебаний и толчков плотность контактов нарушается. В местах соединения проводов образуются большие переходные сопротивления, вызывающие местные нагревы, которые могут привести к воспламенению изоляции и пожарам.
Переходные сопротивления у электродвигателей нередко вызывают сильные нагревы зажимов на коробке. При длительных нагревах изоляционный материал около зажимов прогорает, вследствие чего при смещении зажимов происходят КЗ, которые также могут быть причиной пожаров и загораний.
Особую пожарную опасность представляют искрение щеток и пригорание контактных колец у электрических машин, так как образующиеся искры могут вызвать загорание горючих материалов. Искрение щеток и пригорание контактных колец происходят по следующим причинам: поставлены щетки других марок по сравнению с указанными в паспорте; щетки плохо притерты или слабо прижаты к контактным кольцам; щетки не могут свободно двигаться в обойме щеткодержателя, что ухудшает контакт между контактными кольцами и щетками контактные кольца имеют неровную поверхность и поэтому вибрируют; контактные кольца и щетки загрязнены или замаслены.
В машинах постоянного тока при неправильном выборе и расположении щеток, при больших нагрузках происходит усиление искрения. Воздух в зоне коллектор; ионизируется, что при определенных условиях ведет к появлению пламени круговой формы.
Причиной пожара может быть также перегрев подшипников электрических машин из-за недостаточной их смазки, перекосов вала и т. п. Чаще всего это наблюдается при использовании в машинах подшипников скольжения. Перегрев подшипников может настолько увеличить силы трения, что ротор электрической машины остановится. При этом поступающая электрическая энергия в обмотках машин полностью превращается в теплоту, которая может стать источником воспламенения изоляции и других горючих материалов.
Вывод по вопросу: В процессе эксплуатации электрических машин производственная пыль, попадая на обмотку, может образовывать проводящие мостики, которые вызывают перекрытие или пробой изоляции на корпус, вызывая аварийные режимы работы, приводящие к пожарам.

ВЫВОД ПО ТЕМЕ: Электродвигатель – машина, преобразующая электрическую энергию в механическую. В зависимости от рода потребляемого тока электродвигатели подразделяются на электродвигатели переменного и постоянного тока.
Скачать документ:
4832
RSS
Нет комментариев. Ваш будет первым!
Загрузка...