Тема № 6. Электроизмерительные приборы и измерения

ОБЩИЕ СВЕДЕНИЯ.

Развитие науки и техники всегда было тесно связано с прогрессом в области измерений. Большое значение измерений для науки подчёркивали некоторые учёные.
•Г. Галилей: «Измеряй всё доступное измерению и делай доступное всё недоступное ему».
•Д.И. Менделеев: «Наука начинается с тех пор, как начинают измерять, точная наука немыслима без меры».
•Кельвин: «Каждая вещь известна лишь в той степени, в какой её можно измерить».
Измерения являются одним из основных способов познания природы, её явлений и законов. Каждому, новому открытию в области естественных и технических наук предшествует большое число различных измерений. (Г. Ом – закон Ома; П. Лебедев – давление света).
Важную роль играют измерения в создании новых машин, сооружений, повышении качества продукции. Например, во время испытания стендового крупнейшего в мире турбогенератора 1200 МВт, созданного на Ленинградском объединении «Электросила», измерения производились в 1500 различных его точках.
Особо важную роль играют электрические измерения как электрических так и не электрических величин.
Электрическое измерение - это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку "поддержание" единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют "практическими" эталонами единиц электрических величин.
Измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность.
Измерения производятся с помощью различных средств - измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).
Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин.
Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы ("мультиметры") и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы - ленточные самописцы и электронные осциллографы, аналоговые и цифровые.
Измерения должны выполняться в общепринятых единицах.
Средствами электрических измерений называются технические средства, использующиеся при электрических измерениях.
Различают следующие виды средств электрических измерений:
– Меры;
– Электроизмерительные приборы;
– Измерительные преобразователи;
– Электроизмерительные установки;
– Измерительные информационные системы.
Мерой называется средство измерений, предназначенное для воспроизведения физической величины заданного размера.
Электроизмерительным прибором называется средство электрических измерений, предназначенное для выработки сигналов измерительной информации в форме доступной непосредственного восприятия наблюдателя.
Измерительным преобразователем называется средство электрических измерений, предназначенное для выработки сигналов измерительной информации в форме удобной для передачи, дальнейшего преобразования, хранения, но не поддающейся непосредственному восприятию. Электроизмерительная установка состоит из ряда средств измерений и вспомогательных устройств. С её помощью можно производить более точные и сложные измерения, поверку и градуировку приборов и т.д.
Измерительные информационные системы представляют собой совокупность средств измерений и вспомогательных устройств. Предназначены для автоматического получения измерительной информации от ряда её источников, для её передачи и обработки.
Вывод по вопросу: Измерения являются одним из основных способов познания природы, её явлений и законов.


КЛАССИФИКАЦИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ.

Приборостроительная промышленность выпускает самые разнообразные электроизмерительные приборы высокого класса точности и полностью обеспечивает все возрастающие потребности в них.
Электроизмерительные приборы служат для измерения разных электрических величин и неэлектрических – электрическими методами.
В основу работы электроизмерительных приборов положено то или иное действие электрического тока: механическое, тепловое, магнитное, индукционное.
Виды приборов по роду измеряемой величины, название прибора и их условные обозначения даны в таблице 1.
Род измеряемой величины
Название прибора Условное обозначение
Ток
Напряжение
Мощность
Электрическая энергия
Сопротивление
Сдвиг фаз
Частота
По роду тока приборы делятся на: постоянного, переменного, постоянного и переменного тока.
По классу точности (ГОСТ 1845 – 59) приборы делятся на 8 классов: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Приборы класса точности 0,05 и 0,1 являются эталонными (образцовыми), класса 0,2 и 0,5 – лабораторными, а класса 1, 1,5 и 2,5 – техническими.
По принципу действия приборы делятся на: магнитоэлектрические, электромагнитные,
электродинамические (ферродинамические), индукционные, тепловые, термоэлектрические, вибрационные и др.
Степень защищенности от внешних магнитных полей обозначается цифрами I, II, III, IV. Меньшая цифра соответствует лучшей защите. Условия работы при соответствующих температурах и влажности обозначаются буквами:
А – приборы нормально работают при относительной влажности до 80% и температуре от + 10 до + 35 С;
Б – нормально работают при относительной влажности до 80% и температуре от – 20 до+50 С;
В – нормально работают при относительной влажности до 98% и температуре от – 40 до+60 С.
По способу получения отсчета приборы бывают: непосредственной оценки и приборы сравнения. При технических измерениях применяются приборы непосредственной оценки, как более простые, дешевые и требующие мало времени для измерения. Приборы сравнения применяются для более точных измерений электрических величин и неэлектрических – электрическими методами.
Разнообразие систем электроизмерительных приборов вызвано разными условиями и требованиями при измерении различных электрических и неэлектрических величин.
Вывод по вопросу: Электроизмерительные приборы служат для измерения разных электрических величин и неэлектрических – электрическими методами.


УСТРОЙСТВО ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ.

Независимо от назначения и принципа действия, каждый электроизмерительный прибор состоит из следующих частей:
- корпус;
- измерительный механизм;
- шкала с делениями;
- корректор;
- вывод;
- зажим.
Приборы последних выпусков монтируются в пластмассовом корпусе (реже в металлическом).
Измерительный механизм – главная часть каждого измерительного прибора. Он состоит из подвижной системы с указательной стрелкой и успокоителем, пружин для создания противодействующего момента и неподвижной системы. Название измерительного механизма определяет систему приборов. Успокоителем называется приспособление для уменьшения времени колебаний подвижной части измерительного механизма, возникающих при включении прибора. Чаще всего применяются воздушные и электромагнитные успокоители.
Шкала прибора может быть равномерной и неравномерной. Цена деления шкалы прибора определяется отношением верхнего предела шкалы к количеству делений.
Корректор служит для установки стрелки прибора в нулевое положение.
Магнитоэлектрические приборы. Работают на принципе взаимодействия магнитного поля неподвижного постоянного магнита с током, проходящим по подвижной катушке. Измерительный механизм прибора состоит из подковообразного магнита с полосными наконечниками, неподвижного стального цилиндра, подвижной катушки, стрелки и спиральных пружин. Вращающий момент, действующий на подвижную часть измерительного механизма, и угол поворота стрелки пропорциональны измеряемому току.
Электромагнитные приборы. Работа этих приборов основана на принципе взаимодействия магнитного поля, создаваемого измеряемым током с подвижным стальным сердечником. Измерительный механизм прибора состоит из катушки с узкой щелью внутри, сердечника в виде лепестка из мягкой стали, которой поворачиваясь вокруг оси, может выходить в щель катушки. С осью связаны стрелка, поршень воздушного успокоителя и спиральная пружина, создающая противодействующий момент.
Электродинамические приборы. Работа этих приоров основана на принципе взаимодействия двух проводников с током. В приборах имеются две катушки: подвижная и неподвижная. Неподвижная катушка состоит из двух одинаковых частей, соединенных последовательно. Подвижная катушка закреплена на одной оси с указательной стрелкой, крылом воздушного успокоителя и двумя спиральными пружинами.
Индукционные приборы применяются только при переменном токе в качестве ваттметров и счетчиков электрической энергии. Приборы этой системы характеризуются применением нескольких неподвижных катушек, создающих вращающееся или бегущее магнитное поле, которое индуктирует токи в подвижной части прибора и вызывает ее движение.
Тепловые приборы. Принцип действия тепловых приборов основан на удлинении металлической нити (сплав платины с иридием или серебром) при нагревании ее током, которое затем преобразуется во вращательное движение подвижной части прибора. Тепловые приборы боятся перегрузки, точность приборов невелика, показания приборов зависят от температуры окружающей среды.


АНАЛОГОВЫЕ ПРИБОРЫ

Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример - автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.


ЦИФРОВЫЕ ПРИБОРЫ

Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.
Цифровые вольтметры и мультиметры. Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. "Полуцелый" знак (разряд) - это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1-2 В может показывать напряжение до 1,999 В.
Измерители полных сопротивлений. Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.
Вывод по вопросу: т.о. Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые.


ИЗМЕРЕНИЕ НАПРЯЖЕНИЙ, ТОКОВ, СОПРОТИВЛЕНИЙ И МОЩНОСТЕЙ.

Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.
Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый "медленный". Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1-0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4-0,002%), но зато время преобразования - от 10мкс до 1 мс. Параллельные АЦП - самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность - от 0,4 до 2%.
Измерение мощности и энергии переменного тока. Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj, где Е и I - эффективные значения напряжения и тока, а j - фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj, называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока. С экономической точки зрения, самая важная электрическая величина - энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:
Если время (t1 - t2) измеряется в секундах, напряжение е - в вольтах, а ток i - в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧс). Если же время измеряется в часах, то энергия - в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВт*ч = 1000 ВтЧч).
Цифровые вольтметры и мультиметры. Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно- измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. "Полуцелый" знак (разряд) - это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1- 2 В может показывать напряжение до 1,999 В.
Измерители полных сопротивлений. Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.
Аналоговые приборы.
Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример - автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.
Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3ґ5 до 25ґ35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две
спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части. Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.
Гальванометры. К магнитоэлектрическим приборам относятся и гальванометры - высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.
Зеркальный гальванометр измеряет ток, проходящий через обмотку его подвижной части, помещенной в магнитное поле, по отклонению светового зайчика. 1 - подвес; 2 - зеркальце; 3 - зазор; 4 - постоянный магнит; 5 - обмотка подвижной части; 6 - пружинка подвеса.
Регистрирующие приборы.
Регистрирующие приборы записывают "историю" изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами - в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.
Измерительные мосты.
Измерительный мост - это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой - нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.
Двойной измерительный мост постоянного тока. К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%.
Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р1, р2 резистора Rs и р3, p4 резистора Rx на рис. 2) к току через их токовые зажимы (с1, с2 и с3, с4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с2 и с3. Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M/m = N/n. Затем, изменяя сопротивление Rs, сводят разбаланс к нулю и находят Rx = Rs(N /M).
Измерительные мосты переменного тока. Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50-60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла - Вина.
Измерительный мост Максвелла - Вина. Такой измерительный мост позволяет сравнивать эталоны индуктивности (L) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: Lx = R2R3C1 и Rx = (R2R3) /R1 (рис. 3). Мост уравновешивается даже в случае "нечистого" источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина Lx не зависит от частоты.
Трансформаторный измерительный мост. Одно из преимуществ измерительных мостов переменного тока - простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.
В случае изменяющихся во времени сигналов переменного тока обычно требуется измерять некоторые их характеристики, связанные с мгновенными значениями сигнала. Чаще всего желательно знать среднеквадратические (эффективные) значения электрических величин переменного тока, поскольку мощности нагревания при напряжении 1 В постоянного тока соответствует мощность нагревания при напряжении 1 В (эфф.) переменного тока. Наряду с этим могут представлять интерес и другие величины, например максимальное или среднее абсолютное значение. Среднеквадратическое (эффективное) значение напряжения (или силы) переменного тока определяется как корень квадратный из усредненного по времени квадрата напряжения (или силы тока):
где Т - период сигнала Y(t). Максимальное значение Yмакс - это наибольшее мгновенное значение сигнала, а среднее абсолютное значение YAA - абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Yэфф = 0,707Yмакс и YAA = 0,637Yмакс.
Измерение напряжения и силы переменного тока. Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы - на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.
Вывод по вопросу: Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.

ВЫВОД ПО ТЕМЕ: Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости.
Скачать документ:
24303
RSS
Нет комментариев. Ваш будет первым!
Загрузка...

КАРТА ПОЖАРОВ

Новые пользователи